APPLICATION OF FENG SHUI KNOWLEDGE TO PRELIMINARY DESIGN EVALUATION USING KNOWLEDGE-BASED EXPERT SYSTEMS APPROACH

Michael, Man Yui MAK

Dip Arch, ABTM, MPM

A Thesis submitted for the Degree of Doctor of Philosophy
The University of Newcastle, Australia

November 2004

DECLARATION

I hereby certify that the work embodied in this thesis is the result of original research and ha	18
not been submitted for a higher degree to any other University or Institution.	

(Signed) Michael, Man Yui Mak

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors Professor Swee Eng Chen and Dr Thomas Ng for their enormous encouragement, guidance, and invaluable feedback that made the completion of this thesis possible. I would also like to thank the staff in the School of Architecture and Built Environment, particularly Professor Lindsay Johnston for his valuable advice and Mr Willy Sher who kindly proof read this thesis.

Acknowledgement must also go to Professor Denny McGeorge, for his supervision and encouragement during the initial years of this study.

A special thank to Mr Howard Choy for his expert advice, inspiration and valuable comments throughout the period of this research.

I would like to pay a special tribute to late Professor Bill Lim for his motivation and kind support during the early stages of this research.

My thanks must also extend to many of the participants who contributed to the evaluation process of this research. Their time and effort in supporting my work is very much appreciated. Without their cooperation this research would not have been possible.

Finally, I would like to thank my family, particularly my parents and my wife, Elaine for their love and care that has enabled me to complete this thesis.

TABLE OF CONTENTS

Declar	ration	ii
Ackno	owledgements	iii
Table	of Contents	iv
List of	f Figures	xiii
List of	f Tables	xvi
Abstra	act	xvii
СНАН	PTER 1 INTRODUCTION	1
1.1	Philosophical Background	1
1.1.1	Western Philosophy	1
1.1.2	New Direction of Science	2
1.1.3	Chinese Wisdom	2
1.1.4	New Science and Chinese Wisdom	3
1.2	Research Problem	5
1.2.1	Feng Shui Knowledge	5
1.2.2	Western Acceptance of Feng Shui Knowledge	6
1.2.3	Design Evaluation	7
1.2.4	Feng Shui Approach to Design Evaluation	8
1.2.5	Artificial Intelligence Techniques	8
1.3	Aims of the Research	9
1.4	Research Objectives	9
1.5	Justification for the Research	11
1.6	Scope and Limitations	12
1.7	Structure of the Thesis	12
CHAI	PTER 2 DESIGN EVALUATION	16
2.1	Introduction	16
2.2	Design Stage	16
2.2.1	Nature of Building Projects	16
2.2.2	Design Stages	17
2.2.3	Design Tasks	18
221	Preliminary Design Stages	21

2.3	Building Design	23
2.3.1	Nature of Building Design	23
2.3.2	Characteristics of Building Design	25
2.4	Design Process	26
2.4.1	A simple Design Process Model	26
2.4.2	Stages of Design Process	28
2.4.3	Design: An Iterative Process	29
2.5	Design: A Complex Process	30
2.5.1	Design as a Black Box Process	31
2.5.2	Design as a Glass Box Process	32
2.5.3	Design as a Self-Organising System	32
2.5.4	Cognitive Design Process	33
2.6	Design Evaluation	34
2.6.1	Design Evaluation Concept	34
2.6.2	Evaluation in Design Process	34
2.7	Design Evaluation Conceptual Models	37
2.7.1	Building System Conceptual Models	37
2.7.2	Total Building Performance Conceptual Models	39
2.8	Design Evaluation Computer Systems	40
2.8.1	Nature of Design Evaluation Systems	40
2.8.2	Initial Design Evaluation Systems	41
2.8.3	Hierarchy of Design Evaluation Systems	42
2.8.4	Integrated Design Evaluation Systems	43
2.9	Summary	46
CHAI	PTER 3 DEVELOPMENT OF FENG SHUI	47
3.1	Introduction	47
3.2	General Issues in Studying Feng Shui	47
3.2.1	Terminology	48
3.2.2	Translation	48
3.2.3	Transliteration	49
3.3	Historical Development of Feng Shui	50
3.3.1	Early Stage of Feng Shui Concepts and Practices	50
	3.3.1.1 Origin of Feng Shui Concepts	51
	3.3.1.2 House Divination	53
	3.3.1.3 House Examination	54

3.3.2	Basic Theories of Feng Shui Principles	55
	3.3.2.1 Theory of Qi	55
	3.3.2.2 Theory of Yin and Yang	56
	3.3.2.3 Theory of Five Elements	57
3.3.3	Formation of Feng Shui Knowledge	59
	3.3.3.1 The Chinese Calendar System	59
	3.3.3.2 The Classification of Four Emblems	60
	3.3.3.3 The Invention of the Compass	61
	3.3.3.4 Early Feng Shui Literature	62
3.3.4	Two Schools of Thought: Form and Compass School	64
	3.3.4.1 The Form School	64
	3.3.4.2 The Compass School	65
	3.3.4.3 Characteristics and Comparisons of the Two Schools	67
	3.3.4.4 A Mixture of the Two Schools	68
3.4	Form School Approach	69
3.4.1	Five Geographical Secrets	69
	3.4.1.1 The Dragon	69
	3.4.1.2 The Sand	70
	3.4.1.3 The Water	71
	3.4.1.4 The Cave	72
	3.4.1.5 The Direction	73
3.4.2	The Feng Shui Model	74
3.4.3	Macrocosm and Microcosm	77
3.4.4	Outer and Inner Form	78
	3.4.4.1 Outer Form	78
	3.4.4.2 Inner Form	80
	3.4.4.3 Four Design Modules	81
3.4.5	Contemporary Form School Practice in Architectural Design	83
	3.4.5.1 Three Basic Criteria	83
	3.4.5.2 Site Selection Procedures	84
	3.4.5.3 Major Criteria for the Best Location	85
	3.4.5.4 Design Rules of Thumb	85
	3.4.5.5 Design Criteria Checklist	86
	3.4.5.6 Interior Design Diagrams	87
3.5	Study of Feng Shui	89
351	Western Criticism in the Late 10th Century	90

3.5.2	Western Recognition in the Mid-20th Century	89
3.5.3	Feng Shui Studies in Hong Kong	90
3.5.4	Feng Shui Studies in Mainland China	92
3.5.5	Research in Feng Shui	92
	3.5.5.1 The Geomantic Approach	93
	3.5.5.2 The Ecological Approach	93
	3.5.5.3 The Architectural Approach	94
3.6	Summary	96
СНАІ	PTER 4 KNOWLEDGE-BASED EXPERT SYSTEMS	97
4.1	Introduction	97
4.2	Artificial Intelligence (AI)	97
4.3	Artificial Intelligence Techniques	98
4.3.1	Case-Based Reasoning (CBR)	98
	4.3.1.1 Overview of CBR	98
	4.3.1.2 Structure of CBR	99
	4.3.1.3 Application of CBR to Design Problems	100
	4.3.1.4 Strengths and Weaknesses of CBR	101
4.3.2	Artificial Neural Networks (ANN)	101
	4.3.2.1 Overview of ANN	101
	4.3.2.2 Structure of ANN	102
	4.3.2.3 Application of ANN to Design Problems	102
	4.3.2.4 Strengths and Weaknesses of ANN	103
4.3.3	Knowledge-Based Expert Systems (KBES)	104
	4.3.3.1 Overview of KBES	104
	4.3.3.2 Structure of KBES	104
	4.3.3.3 Application of KBES to Design Problems	106
	4.3.3.4 Strengths and Weaknesses of KBES	107
4.4	Selection of AI Techniques	108
4.4.1	Comparison of AI Techniques	108
4.4.2	Potential of KBES	108
4.4.3	Selection of KBES	109
4.5	Characteristics of KBES	111
4.5.1	Nature of KEBS	111
4.5.2	Classification of KBES	113
	1521 General Classification of KRES Applications	112

	4.5.2.2 Classification in Building Areas	113
	4.5.2.3 Application of KBES to Design Evaluation	115
4.5.3	Basic Components of KBES	116
	4.5.3.1 Knowledge Base	116
	4.5.3.2 Inference Engine	117
	4.5.3.3 User Interface	117
4.6	Development of KBES	118
4.6.1	Steps in KBES Construction	118
	4.6.1.1 Problem Selection	118
	4.6.1.2 Knowledge Acquisition	119
	4.6.1.3 Knowledge Representation	119
	4.6.1.4 Knowledge Encoding	120
	4.6.1.5 Knowledge Testing and Evaluation	120
	4.6.1.6 Knowledge Refinement and Maintenance	120
4.6.2	Difficulties in Constructing a KBES for Feng Shui Knowledge	121
4.6.3	Strategic Stages of KBES Development	122
	4.6.3.1 Conceptual Framework	122
	4.6.3.2 Prototype Model	124
	4.6.3.3 Full System Development	125
4.7	Summary	126
CHAI	PTER 5 RESEARCH METHODOLOGY	127
5.1	Introduction	127
5.2	Research Philosophy	127
5.2.1	Chinese and Western Philosophy	127
5.2.2	Research Approaches	128
5.2.3	Methodological Triangulation	129
5.3	Research Strategy	130
5.3.1	Research Process	130
5.3.2	Nature of Research	132
5.3.3	Research Design	133
5.3.4	Research Process for the Conceptual Framework	135
5.3.5	Research Process for the Prototype Model	137
5.4	Research Method	138
5.4.1	Development of the Conceptual Framework	138
	5.4.1.1 Selection of the Domain Expert	138

	5.4.1.2 Identification of the Knowledge Hierarchy	139
	5.4.1.3 Establishment of the Conceptual Framework	139
5.4.2	Evaluation of the Conceptual Framework	140
	5.4.2.1 Target Population	140
	5.4.2.2 Sampling Method	141
	5.4.2.3 Statistical Analysis	142
	5.4.2.4 Refinement of the Conceptual Framework	144
5.4.3	Prototype Design and Development	144
	5.4.3.1 Prototype Analysis and Design	145
	5.4.3.2 Prototype Construction	146
	5.4.3.3 Prototype Testing and Evaluation	147
5.5	Summary	148
СНАР	TER 6 CONCEPTUAL FRAMEWORK	149
6.1	Introduction	149
6.2	Development of the Conceptual Framework	149
6.2.1	The Form School Approach	149
6.2.2	Concept of the Feng Shui Model	150
6.2.3	Concept of Parallelism	152
6.2.4	Hierarchy of Four Design Modules	152
6.2.5	Criteria for Feng Shui Evaluation	153
6.2.6	Organization of the Form School Approach	156
6.2.7	Outline Hierarchy of Feng Shui Knowledge	157
6.2.8	Overall Hierarchical Structure of Feng Shui Knowledge	159
6.2.9	Conditions for Feng Shui Criteria	161
6.2.10	Conceptual Framework for Feng Shui Design Evaluation	165
6.3	Evaluation of the Conceptual Framework	167
6.3.1	Questionnaire Survey	167
6.3.2	Questionnaire Design	167
6.3.3	Statistical Tests	170
	6.3.3.1 Frequency Analysis	170
	6.3.3.2 Spearman Rank Correlation Coefficient	172
6.3.4	Response Rates	174
6.3.5	Background of Respondents	175
6.3.6	Concept of the Feng Shui Model	177
637	Concept of Parallelism	181

6.3.8	Hierarchy of Four Design Modules	185
6.3.9	Criteria for Feng Shui Evaluation	187
	6.3.9.1 Criteria in Surrounding Environments	187
	6.3.9.2 Criteria in External Layouts	188
	6.3.9.3 Criteria in Internal Layouts	189
	6.3.9.4 Criteria in Interior Arrangements	191
	6.3.9.5 Criteria in Four Design Modules	192
	6.3.9.6 Rankings of Criteria in Four Design Modules	193
6.3.10	Conditions for Feng Shui Criteria	194
	6.3.10.1 Conditions in Surrounding Environments	194
	6.3.10.2 Conditions in External Layouts	197
	6.3.10.3 Conditions in Internal Layouts	200
	6.3.10.4 Conditions in Interior Arrangements	202
	6.3.10.5 Conditions in Four Design Modules	203
6.3.11	Refinement of Conditions in Four Design Modules	204
	6.3.11.1 Refinement of Conditions in Surrounding Environments	206
	6.3.11.2 Refinement of Conditions in External Layouts	208
	6.3.11.3 Refinement of Conditions in Internal Layouts	209
	6.3.11.4 Refinement of Conditions in Interior Arrangements	211
	6.3.11.5 Refinement of Conditions in Four Design Modules	212
6.4	Summary	213
СНАР	TER 7 PROPOTYPE MODEL	214
7.1	Introduction	214
7.2	Prototype Design	214
7.2.1	Domain Specific Area	215
7.2.2	Target Decision	217
7.2.3	Dependency Diagrams	220
	7.2.3.1 Overall Logical Structure	220
	7.2.3.2 Outline Dependency Diagram	222
	7.2.3.3 Detail Dependency Diagram	224
	7.2.3.4 Dependency Diagram of the Surrounding Environment Module	225
	7.2.3.5 Dependency Diagram of the External Layout Module	227
	7.2.3.6 Dependency Diagram of the Internal Layout Module	227
	7.2.3.7 Dependency Diagram of the Interior Arrangement Module	227
721	Decision Tables	221

	7.2.4.1 Decisions at Design Criteria Level	231
	7.2.4.2 Decisions at Feng Shui Model Level	234
	7.2.4.3 Decisions at Overall Evaluation Level	242
7.3	Prototype Development	245
7.3.1	Development Tool	245
	7.3.1.1 Selection of Computer Languages	245
	7.3.1.2 Selection of Shell Programs	246
7.3.2	Data Flow of the Prototype Model	248
7.3.3	Architecture of the Prototype Model	249
7.3.4	Features of the Prototype Model	252
	7.3.4.1 Program Structure	252
	7.3.4.2 Production Rules Approach	252
	7.3.4.3 Backward Chaining Process	254
	7.3.4.4 Input	257
	7.3.4.5 Explanation Facility	259
	7.3.4.6 Uncertainty	261
	7.3.4.7 Output	263
7.4	Summary	266
СНАН	PTER 8 VERIFICATION AND VALIDATION	267
8.1	Introduction	267
8.2	Approaches for Evaluating Expert Systems	267
8.2.1	What to Evaluate	268
8.2.2	How to Evaluate	269
8.2.3	When to Evaluate	270
8.2.4	Constraints for the Evaluation of the Prototype Model	270
8.3	Verification of the Prototype Model	272
8.3.1	Verification Techniques	272
8.3.2	Consistency Checking	272
8.3.3	Completeness Checking	273
8.3.4	Checking at Micro and Macro Levels	275
8.4	Validation of the Prototype Model	276
8.4.1	Validation Techniques	276
8.4.2	Turing Test	277
	8.4.2.1 Selection of Participants	277
	8.4.2.2 Selection of Case Scenarios	277

	8.4.2.3 Evaluation by Participants	278
	8.4.2.4 Selection of Expert Assessors	279
	8.4.2.5 Assessment by Expert Assessors	279
	8.4.2.6 Results of Turing Test	279
	8.4.2.7 Accuracy of Solution	281
8.4.3	Face Validation	281
	8.4.3.1 Selection of Experts	282
	8.4.3.2 Questionnaire for Face Validation	282
	8.4.3.3 Results of Face Validation	283
	8.4.3.4 Performance and Appropriateness	286
8.5	Summary	287
CHA	PTER 9 CONCLUSION	288
9.1	Overview	288
9.2	Research Findings	289
9.2.1	Feng Shui Knowledge Hierarchy for Design Evaluation	289
9.2.2	Knowledge-Based Expert Systems for Feng Shui Knowledge Structure	290
9.2.3	Conceptual Framework for Feng Shui Design Evaluation	292
9.2.4	Prototype Model for Feng Shui Preliminary Design Evaluation	293
9.2.5	Verification and Validation of the Prototype Model	294
9.3	Conclusions	295
9.4	Recommendations for Future Research	297
BIBL	IOGRAPHY	299
GLO	SSARY	318
APPI	ENDIX A QUESTIONNAIRE	321
APPI	ENDIX B DATA ANALYSIS	328
APPI	ENDIX C DECISION TABLES	422
APPI	ENDIX D PROGRAM LISTING	429
APPI	APPENDIX E DEMONSTRATION	
A DDI	ENDLY E CASE SCENADIOS	522

LIST OF FIGURES

Figure 1.1	Outline Structure of the Thesis	13
Figure 2.1	Cost Commitments at Sketch Design Stage	21
Figure 2.2	Preliminary Design Stages	22
Figure 2.3	A Simple Model of the Design Process	27
Figure 2.4	Stages of the Design Process	28
Figure 2.5	Design as an Iterative Process	29
Figure 2.6	Design as a Black Box Process	31
Figure 2.7	"Conjecture - Analysis" Model of the Design Process	33
Figure 2.8	Analysis Synthesis Appraisal Loop	36
Figure 2.9	Conceptual Model of the Building Environment Activity Objectives	
	System	38
Figure 2.10	Critical Framework of Performance Criteria	40
Figure 2.11	Abstraction Hierarchy for the Total Building Evaluation	42
Figure 2.12	A General Framework for the Integrated Building Performance	
	Evaluation	44
Figure 3.1	Brief Outline of the Historical Development of Feng Shui	51
Figure 3.2	The layout of Banpo Settlement	52
Figure 3.3	Tai Chi and the Eight Diagrams	57
Figure 3.4	Productive and Destructive Cycle of the Five Elements	58
Figure 3.5	Orientation of the Five Elements	59
Figure 3.6	Four Emblems in the Celestial Sphere	60
Figure 3.7	A Model of Si Nan (Basic Compass)	61
Figure 3.8	Luopan (Feng Shui Compass)	66
Figure 3.9	Dragon Vein	70
Figure 3.10	The Four Emblems of Sand	71
Figure 3.11	The Inner Bend of a River	72
Figure.3.12	Location of the Cave	72
Figure 3.13	Directions of the Four Emblems	73
Figure 3.14	A Diagram of Auspicious Spatial Organization	74

Figure 3.15	The Ideal Feng Shui Model	75
Figure 3.16	Feng Shui Situations Relate to Human, House, Tomb and City	79
Figure 3.17	Various Patterns of Outer Forms	80
Figure 3.18	Homogeneous Relationships of Entrance to House, Human and	
	Landscape	81
Figure 3.19	Outer & Inner Form and Four Design Modules	82
Figure 3.20	Procedures of Feng Shui Model for Forms of Land	84
Figure 3.21	Interior Design Diagrams for Furniture Placement of a Living Room	88
Figure 4.1	Structure of Case-Based Reasoning	99
Figure 4.2	Structure of Artificial Neural Networks	102
Figure 4.3	Inference Network for a Derivation Problem	105
Figure 4.4	Unconnected Graph for a Formation Problem	106
Figure 4.5	Basic Rule-Based Expert Systems Structure	112
Figure 4.6	Design analysis and Evaluation Cycle	115
Figure 4.7	Basic Components of a KBES Model	116
Figure 4.8	Flow Chart of a Conceptual Framework	123
Figure 5.1	Boehm's Spiral Model	131
Figure 5.2	The Helical Model	131
Figure 5.3	Helical Process of the Research Design	135
Figure 5.4	Research Process for the Conceptual Framework	136
Figure 5.5	Research Process for the Prototype Model	137
Figure 6.1	Hierarchy of the Feng Shui Model	151
Figure 6.2	Correspondence of the Four Emblems in Nature and Architecture	152
Figure 6.3	Hierarchy of Four Design Modules	153
Figure 6.4	Criteria for Feng Shui Evaluation	155
Figure 6.5	Organization of the Form School Approach	156
Figure 6.6	Outline Hierarchy of Feng Shui Knowledge	158
Figure 6.7	Overall Hierarchical Structure of Feng Shui Knowledge	160
Figure 6.8	Conceptual Framework for Feng Shui Design Evaluation	166
Figure 6.9	Structure of the Questionnaire	168
Figure 6.10	Four Surrounding Environment Scenarios used in Sydney Survey	178
Figure 6.11	Sketched layout of Lounge Room from a Respondent in Sydney	182
Figure 6.12	Rankings of Criteria in Four Design Modules in Sydney	193
Figure 7.1	Domain Specific Area of the Prototype Model	216
Figure 7.2	Feng Shui Knowledge Hierarchy of Four Design Modules at	
	Preliminary Design Stages	217

Figure 7.3	Block Diagram for the Target Decision of the Prototype Model	219
Figure 7.4	Overall Logical Structure of the Prototype Model	221
Figure 7.5	Outline Dependency Diagram of the Prototype Model	223
Figure 7.6	Components of a Detail Dependency Diagram	224
Figure 7.7	Dependency Diagram of the Surrounding Environment Module	226
Figure 7.8	Dependency Diagram of the External Layout Module	228
Figure 7.9	Dependency Diagram of the Internal Layout Module	229
Figure 7.10	Dependency Diagram of the Interior Arrangement Module	230
Figure 7.11	An Example of Inference Structure at Design Criteria Level	232
Figure 7.12	Inference Priorities at Feng Shui Model Level	235
Figure 7.13	Inference Structure at Intermediate Level	237
Figure 7.14	Inference Structure at Feng Shui Model Level	240
Figure 7.15	Inference Structure at Overall Evaluation Level	243
Figure 7.16	Data Flow Diagrams for the Prototype Model	248
Figure 7.17	Architecture of the Prototype Model	250
Figure 7.18	IF-THEN Production Rules	253
Figure 7.19	An Example of Production Rules in the FSEE Program	254
Figure 7.20	An Example of "FIND" Statements in the FSEE Program	255
Figure 7.21	Outline Backward Chaining Process of the FSEE	256
Figure 7.22	An Example of "ASK" and "CHOICES" Statements in the FSEE	
	Program	258
Figure 7.23	An Example of an Input Screen of the FSEE	258
Figure 7.24	An Example of an Input Screen with Multiple Answers of the FSEE	259
Figure 7.25	An Example of a "WHY" Explanation Facility of the FSEE	260
Figure 7.26	An example of a "DISPLAY" Explanation Facility of the FSEE	261
Figure 7.27	An Example of Applying a Confidence Factor to the FSEE	263
Figure 7.28	An Example of a Summary Report of the FSEE	264
Figure 7.29	An Example of a Detail Report of the FSEE	264
Figure 7.30	An Example of Explanation Statements of an Unfavourable Design	
	Module	265
Figure 7.31	An Example of Explanations and Recommendations of an	
	Unfavourable Factor	265
Figure 8.1	Questionnaire for Face Validation	283

LIST OF TABLES

Table 2.1	RIBA's Outline Plan of Work for the Design Phase	19
Table 2.2	A Summary of Decision Areas of Design Subsystems	20
Table 2.3	Definitions and Activities of Concepts in Design Process	27
Table 2.4	Structure of the Design Quality Indicator	45
Table 3.1	Major Criteria for the Selection of the Best Feng Shui Location	85
Table 4.1	Comparison of Three AI Techniques for Design Problems	108
Table 4.2	General Classification of KBES Applications	113
Table 5.1	Two-Stage Spiral Process of the Research Design	134
Table 6.1	Conditions for Feng Shui Criteria in Surrounding Environment Module	162
Table 6.2	Conditions for Feng Shui Criteria in External Layout Module	163
Table 6.3	Conditions for Feng Shui Criteria in Internal Layout Module	164
Table 6.4	Conditions for Feng Shui Criteria in Interior Arrangement Module	165
Table 6.5	Response Rates of the Questionnaire Survey	175
Table 6.6	Respondents' Background - Cultural Difference	176
Table 6.7	Respondents' Background - Architectural Experience	176
Table 6.8	Respondents' Background - Year Graduated and Nature of Job Levels	176
Table 6.9	Preferred Surrounding Environment - Mean Scores	179
Table 6.10	Preferred Surrounding Environment - Severity Index and Ranking	179
Table 6.11	Preferred surrounding Environment – First Choice	180
Table 6.12	Brief Analysis of the Four Scenarios According to the Concept of the	
	Feng Shui Model	180
Table 6.13	A Simplified Scoring System for the Lounge Room Layout	183
Table 6.14	Preferred Internal Environment - Mean Scores	183
Table 6.15	Preferred Internal Environment - Severity Index and Ranking	184
Table 6.16	Percentages Weighting of Four Design Modules - Mean Scores	185
Table 6.17	Percentages Weighting of Four Design Modules - Ranking	186
Table 6.18	Criteria in Surrounding Environment Module – Mean Scores	187
Table 6.19	Criteria in Surrounding Environment Module – Ranking	188
Table 6.20	Criteria in External Layout Module - Mean Scores	189
Table 6.21	Criteria in External Layout Module – Ranking	189
Table 6.22	Criteria in Internal Layout Module - Mean Scores	190

Table 6.23	Criteria in Internal Layout Module – Ranking	190
Table 6.24	Criteria in Interior Arrangement - Mean Scores	191
Table 6.25	Criteria in Interior Arrangement – Ranking	191
Table 6.26	Criteria in Four Design Modules - Pearson correlation coefficient test	192
Table 6.27	Conditions in Surrounding Environment Module - Mean Scores	195
Table 6.28	Conditions in Surrounding Environment Module - Severity Index and	
	Ranking	196
Table 6.29	Conditions in External Layout Module - Mean Scores	198
Table 6.30	Conditions in External Layout Module - Severity Index and Ranking	199
Table 6.31	Conditions in Internal Layout Module - Mean Scores	200
Table 6.32	Conditions in Internal Layout Module - Severity Index and Ranking	201
Table 6.33	Conditions in Interior Arrangement Module - Mean Scores	202
Table 6.34	Conditions in Interior Arrangement Module - Severity Index and	
	Ranking	203
Table 6.35	Conditions in Four Design Modules - Spearman Rank Correlation	
	Coefficient test	204
Table 6.36	Refinement of Conditions in Surrounding Environment Module	207
Table 6.37	Refinement of Conditions in External Layout Module	208
Table 6.38	Refinement of Conditions in Internal Layout Module	210
Table 6.39	Refinement of Conditions in Interior Arrangement Module	211
Table 7.1	An Example of a Simplified Decision Table at Design Criteria Level	233
Table 7.2	Priority Table at Intermediate Level	236
Table 7.3	Decision Table for the "Sand" factor at Surrounding Environment	
	Module	238
Table 7.4	Priority Table at Feng Shui Model Level	239
Table 7.5	Decision Table for the Surrounding Environment Module	241
Table 7.6	Priority Table at Overall Evaluation Level	242
Table 7.7	Decision Table for the Outer Form Evaluation	244
Table 8.1	Design Evaluation Generated by Participants and the FSEE	278
Table 8.2	Results of Grading Given by the Expert Assessors	280
Table 8.3	Background Information of the Experts in Face Validation	282
Table 8.4	Performance of the FSEE	284
Table 8.5	Suitability of KBES Approach	285
Table 8.6	Usefulness of the FSEE in Preliminary Design Evaluation	285
Table 8.7	Potential Benefits of the FSEE	286

ABSTRACT

Feng Shui, which translates as "wind" and "water", is a body of ancient Chinese knowledge for improving the relationship between environment, buildings and people. The "Form School" is the most dominant approach that has had a great impact on Chinese architectural theories and practices. In the 19th century, Western scholars first classified Feng Shui as a mixture of superstition, religious sentiment, and observational science. However, since the 1970's, Western scientists have changed to accept the development of a new complexity paradigm, and began to recognize that there are similarities between modern science and Eastern philosophy. Westerners sought deeper understandings of the relationships between the human and natural environments, and embraced Feng Shui as a broadly ecological and architecturally connected paradigm. However, the development of Feng Shui principles and Form School practices are complicated and there is little research into the application of Feng Shui knowledge to the built environment. Architectural design is a complex and intuitive process, and has been described as a "black-box" operation. As one of the important processes of architectural design, design evaluation concepts and systems are still in their early stages of development. Knowledge-Based Expert systems (KBES) approach is one of the Artificial Intelligent techniques that possess the potential to deal with intuitive expertise and advice. This research therefore aimed at examining the appropriateness of applying Feng Shui knowledge to design evaluation at preliminary design stages through the representation of Feng Shui knowledge in a structured framework and the development of a prototype model using KBES approach.

Based on the literature review and the domain expert advice, a hierarchical structure of the Feng Shui knowledge was derived from the four fundamental concepts of Form School approach. A conceptual framework of design evaluation was first established and then evaluated by practicing architects through a postal questionnaire survey conducted in Sydney and Hong Kong. Based on the survey results, the rankings of design criteria and refinement of design conditions were used in the design process of the prototype model. This KBES prototype model, called Feng Shui Expert Evaluator (FSEE) for the design evaluation of residential buildings at preliminary design stages applied to Sydney area, was developed using VP-Expert shell program. The FSEE prototype model has been verified by consistency and completeness checking, and validated by Turing test and Face validation. Results of the research indicated that it is appropriate to apply Feng Shui knowledge to evaluate residential building design at preliminary design stages and the FSEE prototype model is particularly useful in evaluating design objectively and providing a tool for staff training.